FIELD PROCEDURE 4 Moisture

Note: Use this procedure for accurate determinations of moisture content (such as are needed to calculate emission data).

A. Preliminaries

- Use at least the following number of traverse points and locate them according to Method 1.
 - a. 8 for circular <24 in. diameter.
 - b. 9 for rectangular <24 in. equivalent diameter.
 - c. 12 for all other cases.
- 2. Place known volumes of water in the first two impingers.
- 3. Weigh the silica gel to ± 0.5 g, and transfer the silica gel to the fourth impinger; alternatively, weigh the silica gel plus impinger.
- Determine the sampling rate to collect
 ≥21 scf at ≤0.75 cfm simultaneously with,
 and for the same total length of time as, the
 pollutant emission rate run, if appropriate.
- If gas stream is saturated or laden with moisture droplets, attach a temperature sensor (±2°F) to the probe. See section E.

B. Sampling

- Set up the sampling train as shown in Figure F4-1.
- 2. Optional: Check the volume metering system (see QCP 5).
- Turn on the probe heater and (if applicable) the filter heating system to temperatures of about 248°F; allow time for the temperatures to stabilize. Place crushed ice in the ice bath container.
- Optional: Leak-check the sampling train from the inlet of the first impinger inlet or, if applicable, the filter holder (see FP 5a, section F).
- 5. Position the probe tip at the first traverse point. Sample at a constant (\pm 10%) flow rate. Record data as shown in FDS 4.

- 6. Traverse the cross section, sampling at each traverse point for an equal length of time.
- Add more ice and, if necessary, salt to maintain ≤68°F at the silica gel outlet.
- At completion of sampling, disconnect the probe from the filter holder (or from the first impinger).
- Mandatory: Leak-check the sampling train as in step B4.

C. Sample Recovery

- Measure the volume of the moisture condensed to the nearest mL.
- Determine the increase in weight of the silica gel (or silica gel plus impinger) to ±0.5 g. Record data on FDS 4.
- 3. Calculate the moisture percentage.
- 4. Verify constant sampling rate.

D. Post-test Calibrations

Calibrate metering system, temperature gauges, and barometer (see calibration section). Attach applicable CDS's

E. Saturated or Moisture Droplet-Laden Gases

- Measure the stack gas temperature at each traverse point. Calculate the average stack gas temperature.
- Determine the saturation moisture content by (a) using a psychrometric chart and making appropriate corrections if stack pressure is different from that of the chart, or (b) using saturation vapor pressure tables.
- Use the lower of this value or the value from section C.

Figure F4-1. Moisture sampling train.

FIELD DATA SHEET 4 Moisture Content (Reference)

Client/Plant Name									Job #			
City/State			<u> </u>						Date			
							sonnel					
Ory Gas M	eter Cal Fac	tor, Y = _	1.									
Trav. Pt.	Samplg Time (min)	Stk Temp (°F)	ΔН		Vol.	ΔV	% Dev		DGM Temp., t _m		lmp.	
				H ₂ O)	Rdg, V _m (cf)	(cf)	% Dev (≤10%?)		In, °F	Out, °F	Temp. °F	
											<u>.</u>	
····												
											~~~	
			ļ				ļ			,		
									·			
							<del>                                     </del>		<del>_</del>			
	ļ		<u> </u>									
	<u> </u>								*** V			
	<u> </u>		<u> </u>		Avg:			1				
<del></del>		·				cal Data		Γ	Cilia			
						Impinger Volume (mL)			Silica gel weight (g)			
Final V _f				1			1	N _f				
Initial Difference			•	V _i		_		W _i			•	
	<u> </u>			<u> </u>	,	<del></del>		<u> </u>	<u></u>			
	$V_{wc(std)} = 0.0$	04707 (V _f -	- V _i )				$V_{ws}$	g(std)	= 0.04715 (	$(W_f - W_i)$		
	V - 176	V _m	P _m				_		V _{wa(atd)} + \	/ Jung(std)		
	$V_{m(std)} = 17.6$	(t _m +	460)				B _{ws} =	V _{wc}	(std) + V _{wsg(s}	wsg(std) td) + V _{m(std)}		
04/00 0												
QA/QC Check Completeness Lo			Legibility			Accuracy Specifica			tions Reasonableness			
Checked b	y:						·		*******			

Personnel (Signature/Date)
Team Leader (Signature/Date)

## FIELD PROCEDURE 4a Moisture Content (Approximation)

Note: Use this procedure to approximate moisture content to aid in setting isokinetic sampling rates prior to a pollutant emission measurement run.

### A. Preliminaries

- 1. Calibrate metering system according to CP 6.
- 2. Calibrate the barometer according to CP 2d.

### B. Sampling

- 1. Refer to Figure F4a-1. Place exactly 5 mL water in each impinger.
- 2. Leak-check the sampling train according to FP 3c, procedure B or C.
- Connect the probe, insert it into the stack, and sample at a constant rate of 2 L/min until the dry gas meter registers about 1.1 ft³ or until visible liquid droplets are carried over from the first impinger to the second.
- 4. Record temperature, pressure, and dry gas meter readings as shown in FDS 4a.

### C. Sample Recovery

- After sampling, combine the contents of the two impingers, and measure the volume to the nearest 0.5 ml.
- 2. Calculate the moisture content (see FDS 4a).

### D. Alternatives

Use drying tubes, wet bulb-dry bulb techniques, condensation techniques, stoichiometric calculations, previous experience, etc.



Figure F4a-1. Moisture Sampling Train - Approximate Method.

9/30/94: FD4a-1

## FIELD DATA SHEET 4a Moisture Content (Approximate)

Client/Plant Na	me			Job #						
City/State				Date						
	Run #					· · · · · · · · · · · · · · · · · · ·				
Dry Gas Meter	Cal Factor, Y = _		·	Bar. Press	sure, P _b (P _m )		_ in. Hg			
Initial Volume I	H ₂ O, V _i =	mL			ne H ₂ O, V _f	mL				
C	Clock Time	Gas Meter V _m (d		Rate Meter Setting Q (cfm)	Met	er Temp, t _m (°F)				
							-			
						,				
	$V_{wc} = 0.04707$	(V ₁ - V ₁ )								
	$V_{m(std)} = 17.64 \text{ Y}$	$\frac{V_m P_m}{(t_m + 460)}$								
	$B_{ws} = \frac{V_{wc}}{V_{mc} + V_{m(c)}}$	+ 0.025 std)								
							•			
QA/QC Check Completeness	<del></del>			Specificatio	ons	Reasonablene	ess			
Checked by: _	Perso	onnel (Signature	e/Date)	Team I	eader (Signa	ture/Date)				